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Concurrent Complementary Operators for Mesh
Truncation in Frequency-Domain Simulations
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Abstract—The concurrent complementary operators method
(C-COM), when used in the finite-difference time-domain method
(FDTD), achieved levels of accuracy unprecedented in any
previous mesh-truncation technique. In this paper, we intro-
duce the extension of the C-COM theory to frequency-domain
(time-harmonic) simulations. A validation of the new method is
demonstrated by using the finite-difference frequency domain
(FDFD) method.

Index Terms—Absorbing boundary conditions, C-COM, com-
plementary operators, FDFD.

I. COMPLEMENTARY OPERATORS

T HE IDEA behind the complementary operators method
(COM) is simple. Let us consider an outer boundary that

is normal to the axis in the Cartesian coordinates system. Two
auxiliary differential operators, and , are applied to an ab-
sorbing boundary condition (ABC) such as Higdon, Liao, …
etc. The purpose of these two auxiliary operators is to generate
reflection coefficients that are precisely 180out of phase, not
only in theanalyticdomain, but also in thediscrete, or numer-
ical, domain. By averaging the solutions obtained from the ap-
plication of each of the two operators on an ABC, we arrive at
a new solution that is devoid of first-order reflections [1], [2].

The COM offers several advantages over other mesh-trun-
cation techniques such as the perfectly matched layer (PML).
When used in time-domain techniques, the COM and its subse-
quent variant, the concurrent complementary operators method
(C-COM), were demonstrated to achieve higher accuracy than
optimized PML [3]. In frequency-domain methods, the COM
achieved unprecedented accuracy without the need for anya
priori optimization, which is typically required for PML imple-
mentation [4], [5].

In this work, the C-COM is developed for frequency-domain
(time-harmonic) methods. Although the frequency-domain and
time-domain simulation are two different mathematical repre-
sentations of the same physical phenomenon, the numerical so-
lution paradigm is not expected to be identical. For this reason,
complementary operators need to be numerically adapted to fit
the particular numerical model under consideration [5].

Let us consider a computational boundary normal to the
axis and located at . Furthermore, we assume that the
problem domain is in . When the complementary opera-
tors are applied to this boundary in a frequency-domain model,
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the resultant two discrete-domain complementary boundary op-
erators are given by

(1)

(2)

where and are the identity and space shift discrete oper-
ators, respectively, and is the grid spacing [5]. The corre-
sponding reflection coefficients are given, respectively, as

(3)

(4)

where is the reflection coefficient of the operatorand
is the wave number in thedirection. Notice that

and are precisely 180out of phase and, hence, full
complementariness is achieved.

II. C-COM IN FREQUENCY-DOMAIN ALGORITHMS

Let us consider the problem of TM-polarized radiation
in two-dimensional space. The governing equation is the
Helmholz wave equation given by

(5)

For clarity, we limit the discussion here to the finite-difference
frequency-domain (FDFD) method (the implementation and ap-
plication in the finite element method is similar). The first step
in the implementation of the FDFD method is to divide the com-
putational region into grid. Following a similar procedure used
in the implementation of the C-COM in time-domain simulation
[2], we divide the computational domain (grid) into a boundary
region (or layer) and an interior region as shown in Fig. 1. The
width of the boundary layer must be equal or greater than the
stencil needed to implement the operators in (1) and (2) [2].
To each field node in the boundary layer, we assign two field
values, and . In the interior region, we assign a single
field value, to each node, as in conventional implementa-
tion. Next, we apply the second-order accurate finite-difference
scheme to each node in the interior region. For ease of illustra-
tion, we assume that the grid is uniform in theand directions,
and let be the grid spacing.

Applying the FDFD scheme to the free-space Helmholtz
equation at an interior node , we have

(6)
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Fig. 1. Computational domain for the FDFD method showing grid used for
the application of the C-COM mesh truncation technique.

In the boundary region, we apply the finite-difference equation
to each set of fields designated by the subscriptsand .
Designating the boundary nodes by thesubscript, we have

(7)

(8)

The next step is the implementation of the complementary
operators. The first operator is applied to the set of fields
denoted by , and the second operator is applied to
the set of fields . Let be the interface or perimeter be-
tween the boundary layer and the interior region, as illustrated
in Fig. 1. The fundamental mechanism of the C-COM method
is the averaging process needed to annul first-order reflections.
To see how the averaging process is implemented, we focus on
the left-hand-side segment of. In Fig. 1, we show the grid on
and in the close proximity of . On , the update equation for
the fields uses the average field values from
the left-hand side and from the interior region (interior re-
gion includes the boundary layer). For clarity, we designate
the nodes on the boundaryby the subscript . Thus, the fi-
nite-difference equation for the fields onis given by

(9)

Similar equations are applied on the other three sides of. No-
tice that the averaging process expressed by (9) in addition to the
increased storage requirements dictated by the C-COM imple-
mentation do not alter the sparsity structure of the final system
matrix. In fact, the efficiency by which the new system matrix

Fig. 2. TheE field computed across the top of a21��21� computational
domain using FDFD with C-COM applied for mesh truncation (C-COM) and
the Hankel function series solution (Series).

is solved is identical to the efficiency of the solution of typical
FDFD matrix systems with or without the C-COM operations.

The implementation of (7)–(9) in an FDFD code does not re-
quire any extraordinary treatment. Assuming a square compu-
tational domain of rows columns and a boundary layer
of width , the matrix size will be larger by in
comparison to the case when C-COM is not implemented. For
example, if the width of the boundary layer is and the
size of the domain is , i.e., , the increase
in the matrix size will be 19% in comparison to the case where
C-COM is not applied. For the case of , the increase
will be a marginal 2%.

The above presentation focused on the two-dimensional do-
main. The extension to three-dimensional problems is identical.

III. N UMERICAL VALIDATION

We consider the problem of a TM-polarized point source ra-
diating in two-dimensional free space. The source is placed at
the center of a computational domain. The grid
spacing is . The boundary layer is taken to be 5 cells
wide ( ). We use Higdon’s third-order boundary condi-
tion for in (1) and (2). Higdon’s boundary operators are well
suited for Cartesian outer boundaries and thus are ideal for the
finite-difference method. Fig. 2 shows comparison between the
C-COM solution and the exact solution obtained from the ana-
lytical Hankel function series solution for the point source. The
solution presented in Fig. 2 corresponds to the electric field on
nodes lying across the top of the computational domain Notice
that despite the close proximity of the terminal boundary to the
source ( ), the COM solution is observed to compare very
favorably with the exact solution.

One should note that the wider the boundary layer, the higher
the accuracy for fields observed within the interior region. This
is because the absorption of evanescent waves increases with
the position of the averaging layer with respect to the domain
boundary [2].
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IV. CONCLUSION

This work presented the extension of the C-COM theory for
mesh truncation to frequency-domain (time-harmonic) simula-
tion. The extension was made possible by implementing the
concurrent averaging as a matrix operation. The application pro-
cedure was presented for the two-dimensional FDFD method.
The extension to three-dimensional simulation is identical. A
numerical experiment was presented validating the model and
proving the effectiveness of this new mesh-truncation proce-
dure. Application of the C-COM to other frequency-domain
simulation methods such as the finite element method follows
similar procedure and will be the subject of future work.
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