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Concurrent Complementary Operators for Mesh
Truncation in Frequency-Domain Simulations

Omar M. RamahiSenior Member, IEEE

Abstract—The concurrent complementary operators method the resultant two discrete-domain complementary boundary op-
(C-COM), when used in the finite-difference time-domain method  erators are given by
(FDTD), achieved levels of accuracy unprecedented in any

previous mesh-truncation technique. In this paper, we intro- J—§-1
duce the extension of the C-COM theory to frequency-domain D.B = BN B (1)
(time-harmonic) simulations. A validation of the new method is I ;f_l
demonstrated by using the finite-difference frequency domain D.B = + B 2)
(FDFD) method. ¥ Az
Index Terms—Absorbing boundary conditions, C-COM, com- wherel and.S—* are the identity and space shift discrete oper-
plementary operators, FDFD. ators, respectively, andz is the grid spacing [5]. The corre-
sponding reflection coefficients are given, respectively, as
|. COMPLEMENTARY OPERATORS ik s
_ R{D,B} =—¢’***R{B} (3)
HE IDEA behind the complementary operators method R {EEB} :CjkIAmR{B} (4)

(COM) is simple. Let us consider an outer boundary that

is ng_rmal to ther qxis in the Cartesian coordinate_s system. TWhereR{ B} is the reflection coefficient of the operatérand
auxiliary differential operators}. andd;, are applied to an ab- ., is the wave number in the direction. Notice thaR{ D, B}

sorbing boundary condition (ABC) such as Higdon, Liao, .and R{D, B} are precisely 180out of phase and, hence, full
etc. The purpose of these two auxiliary operators is to genergiinplementariness is achieved.

reflection coefficients that are precisely £8Qut of phase, not
only in theanalyticdomain, but also in thdiscrete or numer- ll. C-COM IN FREQUENCY-DOMAIN ALGORITHMS
ical, domain. By averaging the solutions obtained from the ap- _ _ L
plication of each of the two operators on an ABC, we arrive at Let us con§|der the problem of TM-.poIanzed ) radllat|on
a new solution that is devoid of first-order reflections [1], [2]. N wo-dimensional space. The governing equation is the
The COM offers several advantages over other mesh-trf€lmholz wave equation given by
cation techniques such as the perfectly matched layer (PML). V2E. + K2E. = 0 (5)
When used in time-domain techniques, the COM and its subse- N T
quent variant, the concurrent complementary operators mettgst clarity, we limit the discussion here to the finite-difference
(C-COM), were demonstrated to achieve higher accuracy thRequency-domain (FDFD) method (the implementation and ap-
optimized PML [3]. In frequency-domain methods, the COMjjication in the finite element method is similar). The first step
achieved unprecedented accuracy without the need forani the implementation of the FDFD method is to divide the com-
priori optimization, which is typically required for PML imple- pytational region into grid. Following a similar procedure used
mentation [4], [S]. in the implementation of the C-COM in time-domain simulation
In this work, the C-COM is developed for frequency-domaifp], we divide the computational domain (grid) into a boundary
(time-harmonic) methods. Although the frequency-domain amggion (or layer) and an interior region as shown in Fig. 1. The
time-domain simulation are two different mathematical repreyidth of the boundary layer must be equal or greater than the
sentations of the same physical phenomenon, the numerical &encil needed to implement the operators in (1) and (2) [2].
lution paradigm is not expected to be identical. For this reasofp each field node in the boundary layer, we assign two field
complementary operators need to be numerically adapted ta/flues,F.; andE... In the interior region, we assign a single
the particular numerical model under consideration [5]. field value, E. to each node, as in conventional implementa-
Let us consider a computational boundary normal toathetion. Next, we apply the second-order accurate finite-difference
axis and located at = a. Furthermore, we assume that thecheme to each node in the interior region. For ease of illustra-
problem domain is in: < a. When the complementary operation, we assume that the grid is uniform in thandy directions,
tors are applied to this boundary in a frequency-domain modghd letA be the grid spacing.
Applying the FDFD scheme to the free-space Helmholtz
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Fig.2. TheFE. field computed across the top oRaA x 21A computational

) ) ) ) ) domain using FDFD with C-COM applied for mesh truncation (C-COM) and
Fig. 1. Computational domain for the FDFD method showing grid used f@ke Hankel function series solution (Series).

the application of the C-COM mesh truncation technique.

is solved is identical to the efficiency of the solution of typical
In the boundary region, we apply the finite-difference equatidfDFD matrix systems with or without the C-COM operations.
to each set of fields designated by the subscrifitend 2. The implementation of (7)—(9) in an FDFD code does not re-
Designating the boundary nodes by theubscript, we have  quire any extraordinary treatment. Assuming a square compu-
tational domain ofV rows x N columns and a boundary layer
EaGi—1, 4+ EA(i+1, ) +E(. 5+ 1) of width W, the matrix size will be larger by NW — 4W?2 in
(i j—1 K2A2 — DVE (i i)y =0 (7 comparison to th(_a case when C-COM is not implemented. For
+ l(L’j] o +'( ‘ ) l(L" J‘)b ™ example, if the width of the boundary layerlig = 5 and the
Eao(i =1, )+ B2+ 1, J)o + Eaa(i, 5+ 1) size of the domain i200 x 100, i.e., N = 100, the increase
+ E.o(i, j— 1)y + (K2A% —4)E.»(4, j), =0 (8) inthe matrix size will be 19% in comparison to the case where
C-COM is not applied. For the case &f = 1000, the increase
The next step is the implementation of the complementawll be a marginal 2%. _ _
operators. The first operatd?, B is applied to the set of fields ~ The above presentation focused on the two-dimensional do-
denoted byE.;, and the second operatdr, B is applied to Main. The extension to three-dimensional problems is identical.
the set of fieldsFE.,. LetI' be the interface or perimeter be-
tween the boundary layer and the interior region, as illustrated I1l. NUMERICAL VALIDATION
in Fig. 1. The fundamental mechanism of the C-COM method We consider the problem of a TM-polarized point source ra-

is the averaging process needed to annul first-order refIECtiOH%ting in two-dimensional free space. The source is placed at
To see how the averaging process is implemented, we foCUSR center of 21A x 21A computational domain. The grid
the left-hand-side segment bf In Fig. 1, we show the grid On g5 ¢ing isn — 0.05). The boundary layer is taken to be 5 cells
and in the close proximity dF._ OnT, the update equation forwide (W = 5). We use Higdon’s third-order boundary condi-
the fields uses the average field valuS(£.: + EL.») from 4o, for 5 in (1) and (2). Higdon's boundary operators are well
th_e Ie_ft-hand side andl’, from the interior region (mter!or ' suited for Cartesian outer boundaries and thus are ideal for the
gion includes the boundary lay&)). For clarity, we designate (o _jifference method. Fig. 2 shows comparison between the
the nodes on the boundatyby the subscript’. Thus, the fi- = com solution and the exact solution obtained from the ana-
nite-difference equation for the fields Ghis given by lytical Hankel function series solution for the point source. The
] ] ] ] solution presented in Fig. 2 corresponds to the electric field on
Bt =15 + Eoa(i — 1, 5)y +E.(i+1, j);+E.(i, j+1)r hodes lying across the top of the computational domain Notice
2 that despite the close proximity of the terminal boundary to the
+E.(i, j — Dr + (K27 —4)E.(i, /)r = 0. (9 source (.5)), the COM solution is observed to compare very
favorably with the exact solution.
Similar equations are applied on the other three sidés blo- One should note that the wider the boundary layer, the higher
tice that the averaging process expressed by (9) in addition to the accuracy for fields observed within the interior region. This
increased storage requirements dictated by the C-COM impig-because the absorption of evanescent waves increases with
mentation do not alter the sparsity structure of the final systethe position of the averaging layer with respect to the domain
matrix. In fact, the efficiency by which the new system matrikoundary [2].
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